Logo F2FInterview

Cryptography Protocols Interview Questions

Q   |   QA
‹‹ previous12

PEM is the draft Internet Privacy-Enhanced Mail standard, designed, proposed, but not yet officially adopted, by the Internet Activities Board to provide secure electronic mail over the Internet. Designed to work with RFC 822 e-mail formats, PEM includes encryption, authentication, and key management, and allows use of both public-key and secret-key cryptosystems. Multiple cryptographic tools are supported; for each mail message, the specific encryption algorithm, digital signature algorithm, hash function, and so on are specified in the header. PEM explicitly supports only a few cryptographic algorithms; others may be added later. DES in CBC mode is currently the only message encryption algorithm supported, and both RSA and DES are supported for key management. Public-key management in PEM is based on X.509 certificates. 

S/MIME (Secure/ Multipurpose Internet Mail Extensions) is a protocol that adds digital signatures and encryption to Internet MIME (Multipurpose Internet Mail Extensions) messages described in RFC 1521. MIME is the official proposed standard format for extended Internet electronic mail. Internet e-mail messages consist of two parts, the header and the body. The header forms a collection of field/value pairs structured to provide information essential for the transmission of the message. The structure of the headers can be found in RFC 822. The body is normally unstructured unless the e-mail is in MIME format. MIME defines how the body of an e-mail message is structured. The MIME format permits e-mail to include enhanced text, graphics, audio, and more in a standardized manner via MIME-compliant mail systems. However, MIME itself does not provide any security services. The purpose of S/MIME is to define such services, following the syntax given in PKCS #7 for digital signatures and encryption. The MIME body part carries a PKCS #7 message, which itself is the result of cryptographic processing on other MIME body parts. 

PEM-MIME, also known as MIME Object Security Standard or MOSS, is a proposed Internet Draft [CFG95] that is designed to be a successor to PEM. It proposes adding PEM- based security services to MIME messages in much the same manner as S/MIME. Due to the nature of MIME, it is possible to apply different security services to each part of the body. For example, the MIME body may contain two copies of a message, with one copy digitally signed and the other copy not modified in any way. This will allow a recipient to read the message even if the recipient does not have a MIME-compliant mail reader. If the recipient has a privacy-enhanced MIME compliant mail reader, the recipient will be able to verify the digital signature as well. Another possibility would be to encrypt different blocks of the message body using different keys and algorithms, or to sign some blocks and not others need not b. 

S-HTTP (Secure Hypertext Transfer Protocol) is an extension to HTTP (Hypertext Transfer Protocol) that provides security services. It was originally developed by Enterprise Integration Technologies, and further development continues at Terisa Systems. HTTP is the protocol that forms the basis of the World Wide Web, allowing the exchange of multimedia documents on the Web. S-HTTP is designed to provide confidentiality, authenticity, integrity, and non-repudiability while supporting multiple key management mechanisms and cryptographic algorithms via option negotiation between the parties involved in each transaction.

The SSL (Secure Socket Layer) Handshake Protocol was developed by Netscape Communications Corporation to provide security and privacy over the Internet. The protocol supports server and client authentication. The SSL protocol is application independent, allowing protocols like HTTP, FTP (File Transfer Protocol), and Telnet to be layered on top of it transparently. The SSL protocol is able to negotiate encryption keys as well as authenticate the server before data is exchanged by the higher-level application. The SSL protocol maintains the security and integrity of the transmission channel by using encryption, authentication and message authentication codes. 

‹‹ previous12

In order to link this F2FInterview's page as Reference on your website or Blog, click on below text area and pres (CTRL-C) to copy the code in clipboard or right click then copy the following lines after that paste into your website or Blog.

Get Reference Link To This Page: (copy below code by (CTRL-C) and paste into your website or Blog)
HTML Rendering of above code: