Logo F2FInterview

Hadoop Interview Questions

Q   |   QA

In a MapReduce job reducers do not start executing the reduce method until the all Map jobs have completed. Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The programmer defined reduce method is called only after all the mappers have finished.

Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The progress calculation also takes in account the processing of data transfer which is done by reduce process, therefore the reduce progress starts showing up as soon as any intermediate key-value pair for a mapper is available to be transferred to reducer. Though the reducer progress is updated still the programmer defined reduce method is called only after all the mappers have finished.

HDFS, the Hadoop Distributed File System, is responsible for storing huge data on the cluster. This is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant.

  • HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
  • HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
  • HDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files.

In HDFS data is split into blocks and distributed across multiple nodes in the cluster. Each block is typically 64Mb or 128Mb in size. Each block is replicated multiple times. Default is to replicate each block three times. Replicas are stored on different nodes. HDFS utilizes the local file system to store each HDFS block as a separate file. HDFS Block size can not be compared with the traditional file system block size.

The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself. There is only One NameNode process run on any hadoop cluster. NameNode runs on its own JVM process. In a typical production cluster its run on a separate machine. The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline. Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add/copy/move/delete a file. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives.

In order to link this F2FInterview's page as Reference on your website or Blog, click on below text area and pres (CTRL-C) to copy the code in clipboard or right click then copy the following lines after that paste into your website or Blog.

Get Reference Link To This Page: (copy below code by (CTRL-C) and paste into your website or Blog)
HTML Rendering of above code: